Media recipes for Allium

Gamborg B5 basal medium+NAA+2iP (solid) - 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

Gamborg B5 basal medium ¹	3.21 g (prepackaged as G398 ²)
2iP [6-(y,y-dimethylallylamino)purine]	0.05 mg
NAA (1-naphthaleneacetic acid)	0.01 mg
Sucrose	30.0 g

- ✓ Stir until dry ingredients are completely dissolved
- ✓ Bring to final volume (1000 ml) with ddH₂0
- ✓ Adjust pH to 5.7
- ✓ Add:

Agar (Sigma^{®3} A2700*) 6.5 g

- ✓ Heat and stir until boiling
- ✓ For Magenta^{®⁴}GA7* culture vessels dispense prior to autoclaving (60 ml medium/GA7 vessel). For Petri dishes, dispense medium in a laminar flow hood after autoclaving.
- ✓ Autoclave

Recipes for Allium vitrification Method 1: PVS2

2 M glycerol+0.6 M sucrose+1/2 MS loading medium (liquid) - 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

MS basal salt mixture ⁵	2.165 g (prepackaged as M524 ²)
Glycerol (w/v)	184.2 g
Reagent grade sucrose	205.4 g
MS-G ⁶	2.5 ml
MS-vitamins ⁶	10.0 ml

- ✓ Heat and stir until sucrose is completely dissolved
- ✓ Bring to final volume (1000 ml) with ddH_20
- ✓ Adjust pH to 5.7
- ✓ Dispense into desired vessels
- ✓ Autoclave

MS⁵-G stock solution (liquid) – 250 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

\checkmark	

Thiamine HCl	0.02 g
Myo-inositol	5.0 g

- ✓ Bring to final volume (250 ml) and stir until well blended
- ✓ Aliquot into vials (2.5 ml/vial)
- ✓ Store in freezer until needed

MS⁵-vitamin stock solution (liquid) – 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

Glycine (free base)	0.2 g
Myo-inositol	10.0 g
Nicotinic acid (free base)	0.05 g
Pyridoxine HCl	0.05 g
Thiamine HCl	0.01 g

- ✓ Stir until ingredients are well blended
- ✓ Bring to final volume (1000 ml) with ddH20
- ✓ Dispense into desired vessel and store at 5°C

PVS2 (liquid) - 100 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

Glycerol	30.0 g (w/v)
Ethylene glycol	13.5 ml
Reagent grade sucrose	13.7 g
DMSO (dimethylsulfoxide)	13.6 ml

- ✓ Stir until sucrose is completely dissolved
- ✓ Bring to final volume (100 ml) with ddH_20
- ✓ Adjust pH to 5.7

✓ Filter sterilize

1.2 M sucrose+1/2 MS medium (liquid) – 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

MS basal medium w/vitamins ⁵	4.43 g (prepackaged as M519 ²)
Reagent grade sucrose	410.76 g

- ✓ Heat and stir until sucrose is completely dissolved
- ✓ Bring to final volume (1000 ml) with ddH₂0
- ✓ Adjust pH to 5.7
- ✓ Dispense into desired vessels
- ✓ Autoclave

Recipes for Allium vitrification Method 2: PVS3

2 M glycerol+0.4 M sucrose+1/2 MS loading medium (liquid) - 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

MS basal medium w∕vitamins ⁵	2.21 g (prepackaged as M519 ²)
Glycerol (w/v)	184.2 g
Reagent grade sucrose	136.92 g

- ✓ Heat and stir until sucrose is completely dissolved
- ✓ Bring to final volume (1000 ml) with ddH_20
- ✓ Adjust pH to 5.7
- ✓ Dispense into desired vessels
- ✓ Autoclave

PVS3 (liquid) - 100 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

Glycerol	50.0 g (w/v)
Reagent grade sucrose	50.0 g

- ✓ Heat and stir until sucrose is completely dissolved
- ✓ Bring to final volume (100 ml) with ddH₂0
- ✓ Dispense into desired vessels
- ✓ Filter sterilize or autoclave

1.2 M sucrose+1/2 MS medium (liquid) - 1000 ml

 \checkmark To a small volume of double distilled water (ddH₂0) add:

MS basal medium w/vitamins ⁵	4.43 g (prepackaged as M519 ²)
Reagent grade sucrose	410.76 g

- ✓ Heat and stir until sucrose is completely dissolved
- ✓ Bring to final volume (1000 ml) with ddH_20
- ✓ Adjust pH to 5.7
- ✓ Dispense into desired vessels
- ✓ Autoclave

¹Gamborg et al., 1968
²Phytotechnology Laboratories, Shawnee Mission, KS*
³Sigma-Aldrich, St. Louis, MO*
⁴Magenta Corp. Chicago, IL*
⁵Murashige & Skoog, 1962
⁶Recipe follows

* Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.